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ABSTRACT 

 

Damage detection via vibration testing typically relies on damage-sensitive features, which serve as “damage 

indicators”, and decisions upon the existence of damage are based on comparing the damage indicators retrieved from 

two distinct structural states. However, the relatively low sensitivity of damage indicators to the onset of structural 

damage remains an open question, despite the considerable research efforts in vibration testing over the years. Low-

sensitivity problems may be particularly exacerbated by the complex dynamic behavior of lightweight structures, such 

as lightweight bridges subjected to vehicular traffic. In particular, due to material (and, by extension, mass) reduction 

in lightweight bridges, vehicles essentially act as “traveling masses”, which are comparable to the structural mass and 

result in a coupled complex dynamic motion problem that may obscure typical damage indicators used in vibration 

testing. This paper presents a damage detection approach for lightweight bridges with traveling masses, leveraging 

the powerful feature-extraction capabilities of machine learning (ML). In particular, a convolutional neural network 

(CNN) is trained to classify acceleration response data, collected from vibration testing, into damage scenarios. The 

training data for the CNN are created via simulations of damage scenarios, using calibrated analytical models. The 

damage detection approach is validated in laboratory tests on a continuous beam, showcasing the capability of the 

CNN to classify damage scenarios of the beam. The outcome of this paper aims to serve as a starting point towards 

employing ML for damage detection in the context of vibration testing as well as structural health monitoring. 
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1. INTRODUCTION 
 

Vibration testing is frequently employed for system identification and damage detection purposes as part of non-

destructive evaluation of structures. For example, vibration testing is usually applied in the form of experimental 

modal analysis (typically, input-output modal identification) as well as operational modal analysis (typically, output-

only modal identification), based on collecting acceleration response data under controlled excitation and under 

ambient excitation, respectively [1]. Drawing from the field of structural health monitoring (SHM), in which vibration 

testing holds a central role, common ground among most vibration-based damage detection (VBDD) methods is the 

extraction of damage-sensitive features, which essentially serve as “damage indicators”. Decisions on the existence 

of damage are based on comparisons between damage indicators between two structural states, one designated as 

“undamaged” and one as “current” [2]. 

 

In structural engineering, the application of VBDD dates back to the 1970s, with research focusing first on damage-

proofing off-shore oil/gas platforms, with subsequent extensions to critical infrastructure, including bridges [3]. Despite 

the promising results of early laboratory-validated approaches using modal parameters (eigenfrequencies, mode 

shapes) as damage indicators, transferring these approaches to full-scale real-life SHM has proven challenging, due 

to the low sensitivity of dominant (typically, low-frequency) modal parameters to the onset of structural damage [4]. 

Furthermore, in computing modal parameters, there is an implicit requirement that the excitation conditions (e.g. 

acting loads) and structural parameters (e.g. structural mass) are relatively stationary; this requirement rarely holds 

true, due to operational and environmental effects. Finally, tracking eigenfrequencies and mode shapes may be 

particularly difficult in structures exhibiting complex dynamic behavior, in which modal parameters can hardly be 



intuitively inferred via engineering judgment. Complex dynamic behavior is particularly pronounced in lightweight 

bridges subjected to vehicular traffic. In particular, the introduction of high-performance materials in bridge 

construction encourages material reduction to satisfy budgetary, operational or even aesthetic design requirements, 

resulting in vehicular masses being comparable to structural masses of lightweight bridges. Vehicles traversing decks 

of lightweight bridges essentially behave as “traveling masses”, resulting in a complex dynamic motion problem with 

strong coupling between the traveling mass and the structural mass, which is hardly amenable to conventional VBDD 

using modal parameters [5]. At a first glance, the aforementioned problem seems to affect predominantly lightweight 

bridges with complex geometries; however, as will be shown in this paper, the problem may also concern simple 

beam-like bridges. 

 

With respect to lightweight bridges with traveling masses, VBDD essentially entails solving a “moving-load/mass” 

problem. Lots of research has been done on understanding and modeling the moving-load/mass problem, which dates 

back to the days of steam locomotives from two centuries ago, when the first mathematical formulations have been 

developed as a means of analyzing railway traffic over iron bridges [6]. Starting from the 1960’s onwards with the 

seminal work of Fryba [7], the basic problem of a single load moving with constant speed over a single beam span has 

extensively been investigated, including extensions to multiple spans, multiple moving loads, and loads that 

accelerate/decelerate. Furthermore, the moving point load problem – representing a moving vehicle – has evolved into 

a problem analyzing the behavior of a structural sub-system with its own mass, stiffness and damping [8]. Numerical 

methods for analyzing the vibrations of structures under moving inertial loads with applications to railway problems, 

including the development of space-time finite elements for dynamic analysis of both Bernoulli-Euler and Timoshenko 

beams, have been proposed by Bajer and Dyniewicz (2012) [9]. The applicability of the moving point load approaches 

to bridge decks has also drawn research attention [10-13]. A detailed summary on the hierarchy of the mathematical 

models used for train-track-bridge interaction, covering probabilistic dynamic analysis of single bridges as well as 

bridge networks, can be found in Johansson (2013) [14]. Particular research focus has been placed on data analysis 

methods for the moving load/mass problem, such as the short-time Fourier transform (STFT), otherwise known as the 

Gabor transform [15]. Other techniques for analyzing acceleration response data from bridges under moving loads are 

the wavelet transform [16] and the Hilbert transform [17], the latter being used for analyzing acceleration response data 

over large time intervals in single span railway bridges for tracing changes in the eigenfrequencies and damping ratios. 

The possibility of correlating damage indicators of bridges to the energy band variation of the acceleration time history 

of a moving vehicle using STFT has been presented in He et al. (2018) [18]. Regarding damage detection in pre-stressed 

concrete bridges, the relaxation of pre-stress in a continuous beam has been examined with the aid of data recovered 

from vehicles travelling over such bridges [19]. A thorough review of studies on moving loads in structures for the 

purpose of damage detection can be found in Dadoulis and Manolis [20]. 

 

Approaches on VBDD in bridges from a SHM perspective have been proposed since the 1980s. For instance, Doebling 

et al. [3] have provided an overview of VBDD for bridges in the last two decades of the 20th century. Following the 

advances in SHM, case studies of vibration-based SHM systems installed in bridges also have been reported [21]. 

However, vibration-based SHM largely has been restricted to facilitating system identification and enhancing the level 

of knowledge on existing structural conditions rather than actually detecting damage. As stated in [21], by 2011, no 

cases of damage detection using vibration-based SHM in bridges had been reported. The apparent failure of vibration-

based SHM to resonate with practical problems in bridge maintenance has been attributed to the stark differences 

between simple laboratory tests, used to validate vibration-SHM approaches, and real-life structures operating in 

dynamic surroundings [22]. Recent approaches on vibration-based SHM (including VBDD) on bridges have been 

leveraging machine leaning (ML), building upon the seminal work of Farrar and Worden [2], who have cast the SHM 

problem within a statistical pattern recognition paradigm and, later, within a machine learning framework [23]. A recent 

review of the transition from traditional methods to ML-based methods for VBDD can be found in Avci et al. [24]. 

 

Adding to the argument of Cawley [22] that laboratory tests on simple beams may fail to replicate real-world 

phenomena, it is argued in this paper that the comparability of traveling masses to structural masses poses further 

challenges even during laboratory tests with beams. In particular, the strong coupling between a traveling mass and 

the structural mass of a beam obscures the frequency content of acceleration response data, rendering traditional 

VBDD methods, such as frequency shifts and tracking of mode shapes, impractical. To circumvent this problem, the 

damage detection approach presented herein, builds upon feature extraction for identifying structural damage during 

laboratory-level vibration-testing of lightweight bridges, represented as simple beams traversed by traveling masses. 

The damage detection approach, which is essentially an extension of the concept presented by the authors [25], is based 

on machine learning for extracting features from acceleration response data and for classifying the features into 



predefined damage scenarios. Specifically, a convolutional neural network (CNN) is created and trained with 

acceleration time histories, i.e. acceleration responses obtained from simulations of a steel beam, representing a 

lightweight bridge deck, under different damage scenarios. Thereupon, the CNN is fed with acceleration response data 

recorded using a laboratory setup, including a steel beam, instrumented with accelerometers, and traveling masses, 

comparable with the mass of the beam. In [25], the classification capabilities of the CNN have been proven for damage 

scenarios involving “softening” of the supports. In this paper, the capabilities of the CNN in distinguishing between 

softening of supports and cracking close to the midspan of the deck are corroborated. The remainder of the paper starts 

with a description of the simulations and pre-processing of acceleration time histories, conducted to produce training 

data for the CNN. Next, the training process is described, followed by the implementation and validation tests. The 

paper concludes with a summary of the main findings and an outlook on future research. 

 

2. MODELING AND SIMULATION OF THE MOVING-MASS PROBLEM 
 

Machine-learning classification using convolutional neural networks falls into the category of supervised learning, 

which relies on procuring “labeled” training data, i.e. data that correspond to the scenarios (“classes”) envisaged for 

the phenomenon being investigated. With regard to VBDD, obtaining acceleration response data from scenarios 

involving structural damage is practically impossible in real-world structures. Solutions to this problem involve 

modeling and simulation either via laboratory down-scaled physical models of structures or via simulations using 

numerical or analytical modeling. Limitations related to the former solution include scaling problems and accurate 

representation of damage scenarios, while the latter solution introduces simplifications due to the linearization of the 

generally non-linear behavior of structures, particularly in the event of structural damage. In this paper, the labeled 

training data consists of acceleration time histories, obtained via analytical simulation of the moving-mass problem. 

The reasoning behind selecting analytical modeling is that the partial differential equations of the continuous structural 

system are capable of capturing the moving-mass problem in its totality as opposed to piecewise solutions offered by 

finite element modeling. Specifically, analytical models are capable of integrating the effects of the speed of the 

traveling mass, which influences the structural response. With respect to linearization-induced limitations, as will be 

shown in this paper, the CNN exhibits robust performance and the ability to discern subtle damage-induced patterns 

even in the linear components of the structural response. In what follows, the analytical modeling process for obtaining 

the labeled training data is illuminated. 

 

The analytical modeling of a lightweight bridge traversed by a traveling mass can be modeled as a continuous Euler-

Bernoulli beam, shown in Figure 1. The structural response of the beam is described through the following partial 

differential equation of motion: 
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Figure 1. Euler-Bernoulli beam with traveling mass. 

 

As can be seen in Equation (1), the governing parameters of motion are the material density (ρ), the modulus of 

elasticity (E), the moment of inertia (I), the section area of the beam (A), the viscous damping (c), and the speed of 

the traveling mass (v). The response of the beam is expressed via the vertical displacement (w), while the acting force 

is defined as the product of the contact force (fc) and the Dirac delta function (δ) of the coordinate in the longitudinal 

direction of the beam (x) and the speed of the traveling mass over time (t). The derivatives are defined as follows: 
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For estimating the contact force, the equilibrium relationship at the contract point between the traveling mass and the 

beam is considered as follows: 
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The first of the two expressions in Equation (3) corresponds to the total displacements of the traveling mass wT(x, t) 

comprising the vertical displacement of the bridge and a component representing the surface roughness r(x). The 

second expression is the dynamic equilibrium, which comprises the gravitational force of the traveling mass (g is the 

gravitational acceleration), the inertial force of the beam, and the contact force. In Equation (3), the longitudinal 

coordinate is a function of time, depending on the speed of the traveling mass (x(t) = vt). The differentiation in the 

second expression results in: 
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By substituting the expressions from Equations (4) and (5) into Equation (1), the resulting equation of motion is 
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Modal superposition is employed for solving Equation (6) as follows: 
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Specifically, the vertical displacement, which is a function of a spatial (x) and a temporal variable (t) is decomposed 

into a spatial function (mode shape) and a “generalized” temporal function. The complexity of the solution depends 

on the number of mode shapes considered, with a small number being sufficient for describing the structural response. 

For the Euler-Bernoulli beam, the ith mode shape φi(x) is a function of the form: 
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where L is the length of the beam, and ki and C1,i, C2,i, C3,i, C4,i  are the wave number and constants, respectively, both 

depending on the boundary conditions of the beam. Mode shapes are characterized by the orthogonality condition[26]: 
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where δij is the Kronecker delta. To utilize the orthogonality condition, the vertical displacement terms (and respective 

derivatives) are decomposed using Equation (7), pre-multiplied and integrated according to Equation (9). As a result,  

the terms of Equation (6) are converted as follows (notations for time t and coordinate x are dropped for simplicity): 
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In the above, ψ = φ(vt) and ζ = r(vt). By substituting the terms of Equations (10) - (16) in Equation (6), the formulation 

can be recast in matrix form: 
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with q(t) representing the vector of generalized temporal functions of the mode shapes. The matrices appearing in 

Equation (17) are given as follows: 
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Equation (17) is re-formulated in the state-space, which consists of a first-order system of differential equations  
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where the matrices A, B and the vectors y, h are computed as follows: 
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Solving Equation (22) for N discrete time intervals κΔt (κ = 1…N) assumes that the matrices A, B and the vector h 

remain constant over each time step Δt and are updated at the end of it. For each time interval κ by calculating the 

eigenvalues Λκ and eigenvectors Ψκ of matrix (–Aκ)–1Βκ, the fundamental matrix Θκ(t), t ∊ [0, Δt] is determined. Using 

the fundamental matrix, the values of vector y at time instance κ are computed as follows: 
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Upon computation of vector y for N time instances, the corresponding vector q is easily obtained, and its second 

derivative is combined with spatial functions of mode shapes to yield the vertical accelerations. Thereupon, the 

accelerations are used for preparing the labeled training data for the CNN, as shown in the next section. 

 

3. DAMAGE IDENTIFICATION USING A CONVOLUTIONAL NEURAL NETWORK 

 

In this section, the identification of structural damage scenarios using a convolutional neural network is presented. 

First, the preparation of labeled training data for the CNN based on the acceleration time histories, obtained via the 

analytical modeling and simulation process previously shown, is described, followed by the CNN training process. 

 

3.1. Preparation of labeled training data 

 

The acceleration time histories obtained from modeling and simulation are typically smooth, i.e. impervious to 

external interferences, such as ambient noise and measurement errors. As such, mapping based on raw acceleration 

time histories, fed as “sequences” to the CNN, may increase the risk of poor performance when transferring the CNN 

to real vibration testing, in which real-world acceleration response data may be affected by noise or other external 

factors. Alternatively, for the training process proposed herein, the acceleration time histories are pre-processed in an 

attempt to expose features in the data that facilitate the training process. By ensuring that the decisions of the CNN 

are driven by the features, the CNN is expected to perform better in real-world vibration testing, making its decisions 

based on similar features exposed in real-world acceleration response data while neglecting noise and spurious factors. 

The pre-processing method used in this study is the Gabor transform, shown below, which is suitable for non-

stationary phenomena, such as bridges traversed by traveling masses: 
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In Equation (25), Go is the Gabor coefficient at the u-th frequency “bin”, corresponding to frequency f, of a No-sized 

window of acceleration time history ẅ(x, h + γ(No – H)), with H points overlap, collected with sampling frequency fs. 

The Gabor window is denoted by z(h), and Sp is a scaling factor. The notation ●* indicates complex conjugate. The 

Gabor coefficients are typically illustrated in color map images, which essentially converts damage identification to 

image classification, which is well-defined in the field of machine learning. An exemplary illustration of an 

acceleration time history (left) with its Gabor transform color map (right) is shown in Figure 2. 

 

 
 

Figure 2. Acceleration time history and Gabor transform color map. 

  

 
  
  
 

  
  
  

          



3.2. Design and training of the convolutional neural network 

 

The layout of a typical CNN for image classification is shown in Figure 3. The input layer accepts a tricolor red-green-

blue (RGB) image with aspect ratio NI×NI, resulting in an input vector of size NI×NI×3. The input layer is followed by 

a convolution layer, which consists of sliding “kernels”, essentially square matrices of size nI×nI×3, with nI << NI in 

the general case.  Each kernel scans the entire image with a predefined step, termed “stride” (sc), and performs a 

convolution operation (dot product) in each area of the image of size nI×nI, between the RGB values of the area and 

the values of the kernel matrix. Each dot product is stored as a “feature” into an activation map. The number of 

activation maps depends on the number of kernels used. The dimension of each activation map is equal to 

W = (NI – nI)/sc + 1. The features are passed through activation functions, which introduce non-linearity to the CNN, 

thus enabling mapping complex relationships between inputs and outputs. Traditional activation functions, typically 

used in feedforward neural networks, such as multi-layer perceptrons, include the hyperbolic tangent and the sigmoid 

function. In convolutional neural networks, a popular activation function is the “rectifier linear unit” (ReLU), which 

is a linear positive function ah that rejects negative values, i.e., ah(xi) = max(0, xi), where xi is the input to the 

activation function. The outputs of the activation function (“activations”) are forwarded to a pooling layer, which 

performs sliding-window operations. Specifically, the activations corresponding to each activation map are “pooled” 

using a window of size np×np, either by keeping the maximum value of each window (“maximum pooling”) or by 

averaging the values of each window (“average pooling”). The window in the pooling layer moves across each 

activation map in predefined strides (sp). A typical CNN includes a succession of convolution layers and pooling 

layers, depending on the target “depth” of the CNN. 

 

 
 

Figure 3. Layout of a typical CNN with one convolution layer and one pooling layer. 

 

The output dimension of the last (o-th) pooling layer, following the o-th convolution layer, is of size 

Wp,o = (Wo – np)/sp + 1 and is “flattened”, i.e. converted into a single-column layer, whose activations are passed to a 

fully connected layer. The last part of the CNN involves combining the activations of the fully connected layer, in a 

manner similar to feedforward neural networks, before passing the activations to the output layer. Since the output 

layer contains class names and the fully connected layer contains numerical values, the combinations of the activations 

of the fully connected layers are first converted to probability values for each class. The probability values are 

computed using a Softmax layer, which is placed between the fully connected layer and the output layer. Finally, it is 

common to add a dropout layer between the fully connected layer and the Softmax layer, which randomly rejects 

activations during training – based on a predefined percentage of acceptance – so as to avoid overfitting. Dropout 

layers may also be added between pooling layers and convolution layers. 

 

The labeled training data set for the CNN consists of images produced via applying the Gabor transform to acceleration 

time histories, computed for several damage scenarios. Each image in the labeled training data set is accompanied by 

the class name of the corresponding damage scenario. For training, one subset is extracted, termed training subset, 

consisting of 80% of the images of the labeled training data set. The remaining 20% of the images are used for forming 

a testing subset. Training is performed by first initializing the kernel matrices, and then by sequentially propagating 

the images of the training subset through the CNN. Each forward propagation is a training “iteration”, during which 

a number of images are forwarded, referred to as “mini-batch”. In each iteration, the kernel matrices are updated based 

on the “learning rate” in an attempt to minimize the classification performance error (training error). The forward 

propagation of every image in the training subset is called “epoch”. Upon completing a predefined number of 

iterations, a part of the training subset, termed validation subset (20% of the images in the training subset) is 

propagated through the CNN to compute the so-called “validation error”; the purpose of propagating the validation 
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subset is to ensure that the training error and the validation error follow similar trends and that the CNN does not 

overfit to the training subset. Once a predefined threshold of classification accuracy has been reached (i.e. the training 

error and validation error have fallen below a predefined threshold), training is terminated. Thereupon, the testing 

subset is propagated through the CNN to evaluate the final performance of the CNN. The proposed approach, including 

the analytical modeling and simulation and the CNN training, is validated in laboratory tests, described in the next 

section. 

 

4. LABORATORY VALIDATION TESTS 

 

Validation tests are devised, using an experimental setup of a beam with a traveling mass, for showcasing the 

capability of the damage detection approach in classifying acceleration response data into damage scenarios. First, the 

experimental setup is presented, followed by a description of the modeling and simulation of the beam and of the 

generation of labeled training data for the CNN. Next, the CNN definition and training are shown, and the laboratory 

tests are presented. Finally, the tests results are discussed. 

 

4.1. Experimental setup 

 

The experimental setup, shown in Figure 4, consists of a simply supported steel beam of standardized cross section of 

type HEB100. The external dimensions of the beam cross section are 100 mm × 100 mm (width × height), the flange 

thickness is 10 mm, and the web thickness is 6 mm. The length of the beam, essentially defined by the effective length 

of the neutral axis, is L = 5830 mm. The material properties of the beam are computed via tests, which yield an elastic 

modulus of E = 198.5 GPa and a density of ρ = 7.65·103 kg/m3. The beam rests on a steel substructure, comprising an 

arrangement of rods and struts. The struts are adjustable to facilitate leveling the beam, i.e. for compensating for 

imperfections of the floor. It should be noted that only the struts at the end points of the steel beam offer vertical 

support to the bridge; the middle strut is only added to ensure the stability of the substructure and is not connected to 

the beam. The traveling mass is represented by a wheel with a steel shaft, to which variable weights are added. The 

wheel is connected via a twisted-strand steel cable to pulleys, one of which is attached to a motor that induces motion 

to the pulley, and, in turn, to the wheel. The speed of the wheel is regulated via a switch, attached to a panel that is 

connected to the motor, allowing speeds between 4 cm/s to 50 cm/s. 

 

 
 

Figure 4. Experimental setup for the validation tests. 

 

The beam is equipped with a wireless SHM system, consisting of three wireless sensor nodes, two of which (S1 and 

S3) are placed at the quarter-length points, i.e. at a distance of L/4 and 3L/4 from one end of the beam, respectively, 

and one (S2) placed close to the midspan at 9L/20 from one end. The reason for avoiding placing the sensor node 

exactly at the midspan is to avoid the nodal (i.e. zero-crossing) point of the second mode shape, which is expected to 

have a sinusoidal shape. The wireless sensor nodes are of type Lord Microstrain G-Link-200 [27]. Each sensor node 

includes a digital-output triaxial accelerometer with 20-bit resolution, capable of recording accelerations at a 

configurable range from ±2g to ±8g with 25μg/Hz-1 noise floor and sampling frequencies ranging from 1 sample per 



hour to 4,096 Hz. The wireless sensor nodes communicate with a base station, serving as “data aggregator”, of type 

Lord Microstrain WSDA-2000 [28], over the license-free 2.405-2.480 GHz frequency with 16 channels. The 

management of the wireless SHM system is facilitated via dedicated software, running on a portable computer, to 

which the base station is connected. 

 

4.2. Modeling and simulation of the beam 

 

Using the modeling and simulation process, previously described, the beam is analyzed under five damage scenarios, 

corresponding to five damage classes for training the convolutional neural network, labeled L1, L2, L3, L4 and L5, in 

addition to the “intact beam scenario”, labeled as class L0. Two types of damage are considered, (i) cracking of the 

beam at three locations and (ii) “softening” of the supports, representing effects of scour on bridge abutments. In 

accordance with the aforementioned labels, the damage type for each scenario is illustrated in Figure 5. Cracks are 

modeled as discontinuities, represented by rotational springs, while the softening of the supports is modeled using 

translational springs in the vertical direction instead of pin/roller supports. The values for the rotational springs 

corresponding to the cracks (scenarios L1, L2, and L3) range between 340 kNm/rad 1,900 kNm/rad, and the 

translational springs assume values between 420 kN/m and 610 kN/m. These spring values result in a decrease of the 

fundamental eigenfrequency between 7% and 10%, which is represents low to moderate damage. 

 

 
 

Figure 5. Intact beam and damage scenarios inflicted on the beam. 

 

As mentioned previously, the modeling and simulation of the beam is conducted to generate labeled training data for 

the CNN, which must cover an adequate part of the solution space for the problem being studied. Therefore, several 

simulations are run by perturbing parameters of the problem; specifically, the traveling mass, the speed of the mass, 

and the values of the rotational and translational springs. Since samples of the beam material have been tested in the 

laboratory, the material properties are considered of reduced uncertainty and are, thus, excluded from the 

perturbations. The problem parameters in each perturbation are defined using dimensionless factors α1, α2 and α3 with 

0 ≤ α1, α2, α3 ≤ 1, as follows: 

 

(1) Traveling mass: m = 0.01 + 0.03·α1 (0.01 t ≤ m ≤ 0.04 t) 

(2) Mass speed: v = 0.20 + 0.30·α2 (0.20 m/s ≤ v ≤ 0.50 m/s) 

(3) Rotational springs at 1/6-length points: kr = 340 + 160·α3 (340 kNm/rad ≤ kr ≤ 500 kNm/rad) 

(4) Rotational springs at mid-span: kr = 1,300 + 600·α3 (1,300 kNm/rad ≤ kr ≤ 1,900 kNm/rad) 

(5) Translational springs: kt = 420 +190·α3 (420 kN/m ≤ kt ≤ 610 kN/m) 

 

The values for the dimensionless factors are generated using the Latin Hypercube Sampling (LHS) method [29], which 

produces combinations of random samples of the factors assuming uniform distributions for all factors. The LHS 

method builds upon the “Latin square” concept, which is commonly applied in statistical sampling and dictates that 

each sample has its own row/column position in the square and is only used in one combination. The LHS method is 

essentially a generalization of the Latin square concept to an arbitrary number of dimensions, whereby only one sample 

is present in each axis-aligned hyperplane containing the sample. The LHS method has the advantage of requiring 

only the number of samples that are absolutely necessary for the combinations, thus avoiding redundant samples and 

contributing to the computational economy of the analyses. It is noted that the dimensionless factor α3 is re-used in 
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perturbations (3), (4) and (5), because the values of the rotational and the translation springs are not combined with 

each other. Instead, the values of kr for scenarios L1, L2 and L3, as well as the values of kt are individually combined 

with values of m and v. 

The LHS method results in a total of 3,000 simulations, 500 simulations for each class. In each simulation, acceleration 

response data is computed at locations on the beam matching the locations of the sensor nodes, using Equations 22-

24 and Equation 7 with two mode shapes, which, from preliminary tests, have been proven to adequately capture the 

dynamic behavior of the beam. The damping of the two mode shapes has experimentally been estimated to ξ1 = 2.2‰ 

and ξ2 = 8‰. It is noted that the damping coefficients are estimated for the intact beam; however, for low-to-moderate 

damage considered, the effect on the damping coefficients is expected to be negligible and are therefore kept constant 

in all scenarios [30]. The surface roughness r(x) is also estimated from preliminary tests, conducted on the experimental 

setup, by moving a small mass across the beam length at a low velocity (4 cm/s) to avoid any dynamic effects, i.e. the 

transverse beam acceleration is ẅ(x, t) ≈ 0, and by measuring the acceleration response data directly on the traveling 

mass with a wireless sensor node. This acceleration response data is equated to the second time derivative of the 

roughness, assuming that the transmissibility between the contact surface of traveling mass on the beam and the 

wireless sensor node is close to unity. For more information on the estimation of roughness, the interested reader is 

referred to [31]. Thereupon, the spatial derivative of the roughness is approximated as: 

   2r t v r x  (26) 

The acceleration time histories from all simulations are subjected to the Gabor transform to produce images for the 

labeled training data set of the CNN. For the Gabor transform, a Hanning window (z) of size No = 128 measurements 

is selected and a sampling rate of fs = 128 Hz. The overlap H is set to 120 measurements and the scaling factor Sp is 

computed equal to 1.65·10-4 and 3.31·10-4 for u = 0 and u ≠ 0, respectively. Exemplary Gabor transform images, 

plotted in logarithmic scale, are shown in Figure 6 below. The definition and training of the CNN using the labeled 

training data set with the Gabor images is described in the next subsection. 

 

 
 

Figure 6. Spectrograms built from the numerical simulations for all scenarios. 
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4.3. Definition and training of the convolutional neural network 

 

Based on trial-and-error analyses, the architecture defined for the CNN in this paper is shown in Figure 7. Since 

acceleration response data from three sensor nodes are collected, three CNN models are built, each dedicated to one 

sensor node. The reasoning behind using three sensor nodes and three CNN models is to compare the damage detection 

capabilities of the CNN models with different proximity to the location of the damage. The CNN architecture 

comprises an input layer, accepting RGB images of dimensions 180×180, one convolution layer with 16 kernels of 

size 9×9 with stride 1, resulting in 16 activation maps of size 172×172, and one pooling layer, applying maximum 

pooling with a 8×8 window, stride 4 and 50% dropout, which results in 16 activation maps of size 21×21. The output 

of the pooling layer is flattened into a feature vector with 7,056 entries, which is followed by a fully-connected layer 

of 128 neurons, whose activations are forwarded with 50% dropout to a Softmax layer and eventually to an output 

layer, containing a number of classes equal to the scenarios previously defined. 

 

 
 

Figure 7. Architecture defined for the convolutional neural network. 

 

As can be seen in Figure 7, the CNN architecture is kept relatively simple with low depth (i.e. “shallow learning”). 

The rationale for keeping the architecture simple is that the classification using the Gabor images is based on 

combining low-level features from the entire images, which is hardly possible with complex deep CNN architectures. 

In other words, the idea is to avoid classifying the images by identifying high-level features at specific regions (as 

typically done in image recognition), which in these validation tests would result in the CNN overfitting to regions of 

the Gabor images that may contain little information on the structural response. The training subset is formed using 

80% of the Gabor images (i.e. 2,400 images), 20% of which (i.e. 480 images) are used for the validation subset. The 

rest 20% of the images in the labeled training data set (i.e. 600 images) forms the testing subset. The training is 

performed using the Python TensorFlow toolkit [32], the Adam optimizer with a sparse cross-entropy cost function, 

and a learning rate of 0.001. Training is completed after 7 epochs for all CNN models, with classification accuracy 

values, defined as percent ratio of correctly classified images over the total number of images in the validation subset, 

reaching 97.5%. Thereupon, the 600 images of the testing subset are propagated through each CNN model; “confusion 

matrices” for the testing subset, showing the classification results for all CNN models are shown in Figure 8. The 

training accuracy histories for all CNN models are plotted in Figure 9. 

 

 
 

Figure 9. Confusion matrices for the testing subset. 
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Figure 8. Training accuracy of the CNN models. 

 

As shown in Figure 9, all CNN models classify the scenarios of the testing subset correctly, verifying that training is 

successful. The performance of the CNN models is validated using Gabor images generated from acceleration 

response data collected with the wireless sensor nodes and the experimental setup, as will be shown in the next 

subsection. 

 

4.4. Application of the convolutional neural networks 

 

The experimental setup shown in Figure 5 is used to conduct experiments to collect acceleration response data with 

the wireless sensor nodes. Using combinations of traveling mass values and speed values, a total of 120 experiments 

are devised, covering four scenarios (L0, L2, L4, and L5). For the scenarios L4 and L5, the supports at the left end 

and the right end, respectively, are substituted by translational springs of stiffness kt,exp = 457 kN/m (Figure 10 left). 

For the scenario L2, a cut is made 10 cm off the midspan of the bridge, extending through the bottom flange of the 

beam and part of the web, with a total height of 1.65 cm (Figure 10 right), resulting in an equivalent rotational spring 

of kr,exp = 3558 kNm/rad. Both damage types are devised to cause damage of severity that lies outside the upper and 

lower “severity bounds”, considering in modeling and simulation, i.e. the 7% and 10% drop of the fundamental 

eigenfrequency, respectively. Specifically, the translational springs cause a drop in the eigenfrequency of 17%, while 

the respective drop for the cut at the midspan is 4%. The reason for selecting the damage types is to test the 

generalization capabilities of the CNN models for damage scenarios that are both less severe and more severe than 

the damage simulated. Five traveling mass values are used, 13 kg, 18 kg, 23 kg, 27 kg, and 38 kg, and six speed values 

from 0.25 m/s to 0.50 m/s with 0.05 m/s increment. The acceleration response data collected by the three wireless 

sensor nodes is used to produce Gabor transform images, similar to the images produced during modeling and 

simulation. The similarity in the features exposed by the Gabor transform between modeling and simulation and the 

experiments is shown in Figure 11. Moreover, Figure 12 shows the subtle differences between scenarios L0 and L2 in 

the features of the corresponding Gabor images that corroborate the necessity of machine learning for damage 

detection in the traveling mass problem. The 120 Gabor images are propagated through the CNN variants, previously 

trained. The classification results are shown in the form of a confusion matrix, illustrated in Figure 13. 

 

 
 

Figure 10. Translation spring substituting pinned support (left) and cut close to midspan (right). 
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Figure 11. Comparison between Gabor images from modeling and simulation and corresponding experiment. 

 

 
 

Figure 12. Differences in eigenfrequency-related features between scenario L0 and scenario L2. 

 

 

 
 

Figure 13. Confusion matrices for the experiments. 

 

As can be seen in Figure 13, the best classification results are obtained for the acceleration response data from sensor 

nodes S1 and S3. Particularly concerning damage scenario L2, the classification using the data from sensor node S2 

(close to the midspan) exhibits several “false negatives”, which, at a first glance, would be unexpected considering 

the proximity of the sensor node to the crack. However, the false negatives are attributed to the nodal (zero-crossing) 

point of the second mode shape, whose participation in the structural response has been considered during modeling 

and simulation and has been observed in the acceleration response data of the other sensor nodes. The scarcity of 

features of the second mode shape in the Gabor images from sensor node S2 has resulted in the false classification of 

the images as “intact”, since the classification has predominantly been driven by features of the first mode shape, 

which has low sensitivity to the onset of damage. As regards the damage scenarios L4 and L5, the classification results 

demonstrate the capability of the CNN models in detecting features indicative of softening of supports, as well as to 
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generalize for damage severity that has not been accounted for during training. Satisfactory generalization capabilities 

are also observed for CNN models corresponding to sensor nodes S1 and S3 for damage scenario L2. 

 

Nevertheless, the classification results of damage scenario L2 are subjected to further scrutiny in an attempt to examine 

whether the consensus of the three sensor nodes helps avoid false negatives. In Table 1, the 30 experiments, conducted 

for damage scenario L2 are listed, along with the classification results from each CNN model, represented by the 

corresponding wireless sensor node.  

 

Table 1. Damage classification of experiments for the L2 damage scenario (shaded cells with bold font 

indicate false classification). 

 

Experiment 
Classification 

Experiment 
Classification 

S1 S2 S3 S1 S2 S3 

1 L2 L0 L2 16 L2 L2 L2 

2 L2 L0 L2 17 L2 L2 L2 

3 L2 L0 L2 18 L0 L0 L0 

4 L2 L2 L2 19 L2 L0 L2 

5 L2 L0 L2 20 L2 L0 L2 

6 L2 L0 L2 21 L2 L0 L2 

7 L2 L0 L2 22 L2 L2 L2 

8 L2 L2 L2 23 L2 L2 L2 

9 L2 L2 L2 24 L0 L2 L2 

10 L2 L2 L2 25 L2 L0 L0 

11 L2 L0 L2 26 L0 L0 L2 

12 L0 L0 L2 27 L2 L0 L0 

13 L2 L2 L2 28 L2 L2 L2 

14 L2 L2 L2 29 L2 L2 L2 

15 L2 L0 L2 30 L0 L2 L2 

 

As evidenced by Table 4, only in one experiment a unanimous false classification is observed. Furthermore, even if 

the decision upon the existence of damage is based on majority voting, false classification in 2 out of 3 CNN variants 

is observed only in 4 experiments. As a result, assuming that the proposed damage detection approach is applied using 

acceleration response data from more than one location on the structure, false negative classifications are likely to be 

avoided. Finally, Figure 14 illustrates the classification probabilities for all the scenarios applied in the laboratory 

experiments and for the CNN models of sensor nodes S1 and S3. The high classification probabilities for damage 

scenarios L4 and L5 (close to 100%) show that the CNN models are capable of generalizing easily when the damage 

exceeds the lower bound of damage severity simulated for generating the labeled training data set. By contrast, when 

damage exceeds the respective upper bound (damage scenario L2), the classification probabilities are lower, and false 

negatives are likely, since damage scenario L2 is close to the intact beam scenario L0. To enhance the classification 

capabilities of the CNN models, it is recommended to adopt a transfer learning method that would help accommodate 

the domain mismatch between simulations and real-world structural behavior. 

 

5. SUMMARY AND CONCLUSIONS 

 

Traveling masses on lightweight bridges represent a non-stationary problem that requires sophisticated data analysis 

methods, extending beyond traditional data analysis methods applied in structural health monitoring and experimental 

testing. Drawing up on recent advances in informatics, this paper has proposed a damage detection approach using 

machine learning models, the mapping capabilities of which have been well established in scientific literature. In 

particular, convolutional neural network models have been employed for classifying acceleration response data, 

collected by sensors installed on structures, into damage scenarios. In lieu of acceleration response data corresponding 

to actual structural damage, the CNN models are trained using acceleration time histories generated from an analytical 

modeling and simulation process, employing a computationally efficient Euler-Bernoulli beam model. Prior to being 



 
 

Figure 14. Classification probabilities for all classes considered in the laboratory experiments for sensor 

nodes S1 and S3. 

 

used for CNN training, the acceleration time histories are subjected to the Gabor transform, which exposes coupled 

time-frequency features in the accelerations that facilitate classification. Upon completing training, the CNN models 

are applied using real-world acceleration response data. 

 

The proposed damage detection approach has been implemented and validated in laboratory tests, using an 

experimental setup, consisting of a simply supported steel beam, a moving mass (sliding along the beam), pulleys, 

and a motor for regulating the speed of the moving mass. The beam first has been modeled and analyzed for various 

combinations of moving masses and speeds under six scenarios, five of which have included damage and one 

representing the “intact” beam, using the analytical modeling and simulation process and considering the dynamic 

contribution of two mode shapes. The acceleration time histories from the modeling and simulation from three 

measurement locations of the beam have been used to train three CNN models, respectively, to classify the 

accelerations into the six scenarios. Upon completing training, the CNN models have been used for classifying 

acceleration response data collected from experiments conducted using the aforementioned setup and combinations 

of moving masses and speeds. The beam has been instrumented with three wireless sensor nodes, which have been 

attached to the same locations as the measurement locations considered for modeling and simulation. Acceleration 

response data has been collected from the intact beam and after inflicting damage, represented by a crack close to the 

midspan of the beam and by substituting the end supports with translational springs. In total, four out of the six 

scenarios, considered in modeling and simulations, have been devised for the experiments. Moreover, the damage 

severity in the experiments has deliberately been devised to fall outside the severity bounds considered in modeling 

and simulation to test the generalization capabilities of the CNN models. The test results have shown that two CNN 

models, corresponding to quarter-length locations of the beam, have exhibited high accuracy in classifying the 

acceleration response data from the experiments, with only four misclassification instances per variant. The CNN 

variant that has used acceleration response data from the midspan has performed well in classifying damage to the 

supports, but below average in classifying the crack damage close the midspan. The poor performance of this CNN 

variant is attributed to the scarcity of frequency content of the second mode shape, which is more sensitive to damage 

than the first mode shape, due to a zero-crossing point of the second mode shape at the midspan. Nevertheless, as 

shown in the paper, the combined outcome of all CNN variants is capable of reducing the probability of false negatives, 

when the damage detection outcome follows a majority voting rationale. Finally, the test results have shown that the 

generalization capabilities of the CNN variants are better when damage severity exceeds the upper severity bound, 

considered in modeling and simulation, than when dropping below the lower severity bound. Future work will involve 
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testing the damage detection approach in real-world conditions and integrating the approach into a structural health 

monitoring strategy. 
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